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Abstract
We employ density functional theory to study in detail the crystallization of super-paramagnetic
particles in two dimensions under the influence of an external magnetic field that lies
perpendicular to the confining plane. The field induces non-fluctuating magnetic dipoles on the
particles, resulting in an interparticle interaction that scales as the inverse cube of the distance
separating them. In line with previous findings for long-range interactions in three spatial
dimensions, we find that explicit inclusion of liquid-state structural information on the triplet
correlations is crucial to yield theoretical predictions that agree quantitatively with experiment.
A non-perturbative treatment is superior to the oft-employed functional Taylor expansions,
truncated at second or third order. We go beyond the usual Gaussian parametrization of the
density site-orbitals by performing free minimizations with respect to both the shape and the
normalization of the profiles, allowing for finite defect concentrations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Classical density functional theory (DFT) is the method of
choice for studying inhomogeneous fluids [1]. Perhaps
the most extreme inhomogeneities arise in a crystalline
solid, where the density field ρ(r) is both periodic and
shows extreme differences between its local values on the
lattice sites and in the interstitial regions. DFT has been
successfully applied to crystallization for a number of different
systems [2–4], mostly in three spatial dimensions. Here, the
most popular system is the prototype of hard spheres, for which
a geometry-based theory [7–9] has proven quite successful.
For soft interactions [10–12], however, where one cannot
assign geometrical measures to the interacting point-particles,
one has to resort to other functionals. In particular, it has
been shown [13] that for long-range interactions, structural
information of the liquid on the pair-level is insufficient
and triplet fluid correlations should be allowed to explicitly
flow into the construction of the functional. Even less is
known about crystallization in two spatial dimensions [14–17].
Here, we consider a combination of the two above-mentioned
cases in considering long-range interactions in two spatial

1 Author to whom any correspondence should be addressed.

dimensions and we study in detail the role played by accurate
liquid-state information on triplet correlations in determining
phase boundaries between a fluid and the coexisting crystal.

In this paper, we study freezing of a classical two-
dimensional model fluid, namely of a fluid of aligned dipoles
directed perpendicular to the 2D-plane and repelling each
other with a soft 1/r 3 inverse-power pair potential, with
the help of density functional theory (DFT). In [17] we
studied freezing of the dipolar system with the modified
weighted-density approximation and its extension to third-
order correlation functions. Within this paper we will extend
our previous study in several ways: we allow for a finite
defect concentration and relax the constraint of Gaussian
density peaks in the crystalline phase, as, e.g., suggested for
hard sphere crystals in [18]. Furthermore, we systematically
study the influence of the inclusion of perturbative and non-
perturbative higher-order correlation functions of the liquid in
the density functional approximation on the freezing transition.
We employ two different approximations to the three-particle
correlation functions, which lead to substantially different
results, therefore signaling the importance of an accurate
approximation of the latter.

We use different approximations to the DFT—based on
the famous and powerful approach by Ramakrishnan and
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Yussouff [19], but extending on the latter by taking higher-
order terms into account, as will be described below. The
quantity to be approximated in the DFT of freezing is the
excess Helmholtz free energy functional Fex[ρ(r)], a unique
functional of the inhomogeneous one-particle density ρ(r) of
the solid [1]. The uniqueness property implies that the excess
free energy can be formally expanded about the excess free
energy of a homogeneous fluid at a uniform density ρ in terms
of density difference �ρ(r) = ρ(r) − ρ:

β Fex[ρ(r)] = β Fex(ρ) −
∞∑

n=1

1

n!
∫

V
dr1 · · · drn

c(n)
0 (r1, . . . , rn; ρ) × �ρ(r1) · · · �ρ(rn), (1)

where β = 1/(kBT ) and V is the volume occupied of the
system. Fex(ρ) is the Helmholtz excess free energy and the c(n)

0
are the n-particle direct correlation functions of the fluid, which
are well known up to second order for dipolar fluids [17].

Within the theory of Ramakrishnan and Yussouff this
series expansion is truncated at second order. We therefore
refer to the theory as ‘second-order theory’ (SOT). Part of the
reason for this truncation lies in the poor knowledge about
higher than second-order correlation functions; the truncation
is not well justified in the problem of freezing, since here
�ρ(r) is not a small parameter. In particular, it has been
extensively shown that the SOT fails to accurately predict
freezing for systems interacting via long-range pair potentials
for three-dimensional systems [13, 20]. We will show in this
work that also for the two-dimensional dipolar system the SOT
highly underestimates the stability of the crystal. Therefore,
several approaches have been employed to include higher than
second-order terms in the expansion—in a perturbative [10] or
non-perturbative way [11, 13, 21, 22].

The simplest attempt to go beyond the SOT is to
explicitly include the third-order term in the expansion in
equation (1), which we refer to as ‘third-order theory’ (TOT).
Employing the TOT demands an approximate form of the
three-particle direct correlation function c(3)

0 (r, r′; ρ) of the
fluid. We will show here, that—given an accurate expression
for c(3)

0 (r, r′; ρ)—including this term substantially improves
the predicted freezing temperature of the long-range 1/r 3-fluid
(in line with previous findings for long-range interactions in
3D [23]).

A third approach to the DFT we follow here, is the
modified weighted-density approximation (MWDA) [21] by
Denton and Ashcroft which we have already briefly presented
for the dipolar system in a previous paper [17]. This approach
includes first and second-order correlation functions of the
fluid exactly (as in the SOT) and higher-order correlation
functions in a non-perturbative, implicit fashion. We find
that the MWDA, in two dimensions, slightly shifts the
freezing transition to higher temperature as compared to
the SOT, still highly underestimating the stability of the
solid state. In a fourth approach we employ the so called
‘extended modified weighted-density approximation’ (EMA),
as suggested in [13, 22]. Different from the MWDA, this
approximation to the density functional now includes not only
first and second, but also third-order correlation functions

of the fluid exactly (as in the TOT). Higher than third-
order correlation functions are contained in a non-perturbative,
implicit fashion, following a similar scheme as in the MWDA.
For the dipolar system we find that this approach leads to a very
accurate value for the freezing transition temperature, lying
slightly above the one obtained from the simpler TOT. The
two-particle correlation functions of the liquid are obtained
from liquid-state integral equation theory and from simulation.
The three-particle correlation functions are obtained applying
two approximations, both based on the two-particle correlation
functions: The first approximation used is by Denton and
Ashcroft (DA) [24], and the second is by Barrat, Hansen, and
Pastore (BHP) [25].

We find that the inclusion of higher-order correlation
functions in a perturbative (TOT) or non-perturbative (EMA)
way subsequently increases the freezing transition tempera-
ture, thus broadening the range of the thermodynamical sta-
bility of the crystal. In fact, we find the freezing transition
temperature to be in good agreement with experiment [26] and
simulation [27–29]. The importance of the inclusion of third-
order correlation functions is addressed to the long-range na-
ture of the dipole–dipole pair interaction.

The rest of this work is organized as follows. In section 2
we give a brief description of the MWDA and of the EMA.
In section 3 we apply the different approximations to the
DFT to the freezing of monodisperse two-dimensional liquids.
The theory is adapted to the dipolar system under study in
section 4. In section 5 we present the resulting phase diagrams
and different structural properties of the crystalline system. We
conclude in section 6.

2. Modified weighted-density approximation and its
extension to third-order correlation functions

It is well known that the intrinsic Helmholtz free energy of an
inhomogeneous system can be divided into an ‘ideal’ and an
‘excess’ part,

F [ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] . (2)

The ‘ideal’ term

Fid [ρ(r)] = β−1
∫

drρ(r)
{
ln

[
ρ(r)�2

] − 1
}
, (3)

is known exactly. In equation (3) � is the thermal
de Broglie wavelength. The excess part can only be
calculated approximately. In contrast to the SOT and TOT,
within the MWDA and EMA the excess free energy of the
inhomogeneous system is approximated by setting it equal
to the excess free energy of a uniform liquid evaluated at a
weighted density ρ̂,

Fex [ρ(r)] ≈ FM/E
ex [ρ(r)] = N f0(ρ̂

M/E), (4)

where superscripts denote the approximations to the DFT,
MWDA (M) and EMA (E), respectively. N is the number of
particles in the system and f0(ρ̂) is the excess free energy per
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particle of the liquid at the weighted density ρ̂. The latter is
expressed as

ρ̂M/E [ρ(r)] = 1

N

∫

V
dr

∫

V
dr′ρ(r)ρ(r′)w

(
r − r′; ρ̂

)

+ 1

N2

∫

V
dr

∫

V
dr′

∫

V
dr′′ρ(r)ρ(r′)ρ(r′′)

× v
(
r − r′, r − r′′; ρ̂

)
, (5)

where the second term only appears in the EMA and not in
the MWDA. The weight functions w(r; ρ) and v(r, r′; ρ)

are determined in such a way that the approximate functional
FM/E

ex [ρ(r)] is exact up to second (MWDA) or third (EMA)
order in density difference �ρ(r) = (ρ(r) − ρ), i.e., up to
that order equation (4) and equation (1) still agree. Note that
the weighted density ρ̂ is determined self-consistently, as it
appears as an argument of both weight functions. In order to
obtain equality with equation (1) up to second or third order in
�ρ we demand the weight functions to be normalized, i.e.,

∫

V
drw(r; ρ) + 1

V

∫

V
dr

∫

V
dr′v(r, r′; ρ) = 1 (6)

and to fulfill the requirements

lim
ρ(r)→ρ

[
δ2 FM/E

ex

δρ(r)δρ(r′)

]
= −β−1c(2)

0

(
r − r′; ρ

)
,

lim
ρ(r)→ρ

[
δ3 FE

ex

δρ(r)δρ(r′)δρ(r′′)

]
= −β−1c(3)

0 (r − r′, r − r′′; ρ),

(7)
where c(2)

0 (r; ρ) and c(3)
0 (r, r′; ρ) are the two- and three-

particle correlation functions of the liquid with density ρ

which are an input to the theory. These conditions uniquely
determine the weight functions. In order to obtain the simple
algebraic equations for v and w that can be found in [22] a
further approximation has to be made: the inner integral in
the second term of equation (6) is assumed to be equal to a
constant, C (demanding the first term in equation (6) is equal
to 1−C), where C is independent of the fixed space coordinate
of the weight function v(r, r′; ρ). The weighted density ρ̂ in
equation (5) is independent of the choice of C [22].

For non-zero wavevectors (k �= 0,k′ �= 0, and k + k′ �=
0), the Fourier transforms of the weight functions w̃(k; ρ) and
ṽ(k,k′; ρ) are simply proportional to the Fourier transforms
of the second- and third-order direct correlation functions
c̃(2)

0 (k; ρ) and c̃(3)
0 (k,k′; ρ), respectively:

−β−1c̃(2)

0 (k; ρ) = 2 f ′
0(ρ)w̃(k; ρ),

−β−1c̃(3)
0 (k,k′; ρ) = 6 f ′

0(ρ)ṽ(k,k′; ρ),
(8)

where primes on the excess free energy density f0 denote
derivatives with respect to density. Furthermore, equation (5),
together with equations (6) and (7) guarantee fulfillment of the
sum rules

β−1c̃(2)M/E
0 (k = 0; ρ) = 2 f ′

0(ρ) + ρ f ′′
0 (ρ),

c̃(3)M/E
0 (k,k′ = 0; ρ) = c̃(3)M/E

0 (k,−k; ρ) = ∂ c̃(2)

0 (k; ρ)

∂ρ
,

(9)

where the former is the compressibility sum rule, and where
the superscripts on the correlation functions indicate that
these functions are the Fourier transforms of the functional
derivatives of the approximate excess free energy functionals
in the limit of constant average density ρ (cf equation (7)).

Due to the self-consistency requirement, the approximate
excess free energies of both the MWDA and the EMA include
contributions from arbitrarily many higher orders. However,
if expanded about the excess free energy of a fluid with the
same average density as the inhomogeneous system according
to equation (1), the MWDA only gives even-order terms
and estimates the odd-order terms zero. Contrary, the EMA
includes, approximately, contributions from all higher-order
terms. In particular, it includes the exact third-order term,
which is an input to the theory.

3. Application of the different approximations to the
DFT to freezing of monodisperse two-dimensional
liquids

In order to find the equilibrium one-particle density ρeq(r)

of a system at a given average density ρ and temperature
T we minimize the approximate total free energy functional
F[ρ(r)] of equation (2) with respect to the inhomogeneous
one-particle density ρ(r) for fixed ρ. As described, for
example, in [21, 22] this minimization is pursued in a number
of subsequent steps, depending on the kind of approximation:
For all approximations to the DFT, first, an appropriate
parametrization for the inhomogeneous one-particle density is
made (we will employ a free minimization in section 5.3).
Within the SOT and TOT, we can now, in a second step,
calculate the excess and ideal parts of the Helmholtz free
energy according to equations (1) and (3). However, within
the MWDA and EMA, the excess part is given by equation (4),
with the weighted density ρ̂ obtained in an intermediate step
according to equation (5). In a final step, minimization
is carried out with respect to all free variables in the
parametrization of ρ(r).

The crystalline one-particle density which we expect to
be in equilibrium for low temperature and/or high density
has the symmetry of the triangular crystal—the quadratic
lattice is thermodynamically unstable for the whole range
of accessible densities/coupling constants and we expect
mechanical instability with respect to the triangular lattice for
any coupling. We can therefore express ρ(r) as a sum over
reciprocal lattice vectors (RLVs) of the triangular lattice:

ρ(r) = ρ

[
1 +

∑

K �=0

μKeiK·r
]

, (10)

where ρ is the average density of the solid, {K} is the set
of reciprocal lattice vectors (RLVs), and where the μK are
the dimensionless Fourier components. In terms of Fourier
components the excess part to the Helmholtz free energy within
SOT and TOT now reads

β FS/T
ex [ρ(r)]/N = β f0(ρ) − ρ

2

∑

K �=0

μ2
K c̃(2)

0 (k; ρ)

− ρ2

6

∑

K �=0

∑

K ′ �=0,−K

μKμK ′μ−(K+K ′)c̃
(3)
0 (K,K ′; ρ), (11)
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the superscript referring to the SOT (S) and to the TOT (T),
respectively. The third term only appears in the TOT.

Within the MWDA and EMA, the weighted density,
equation (5), now reads

ρ̂M/E = ρ

{
1 +

∑

K �=0

μ2
Kw

(
K ; ρ̂

)

+ ρ
∑

K �=0

∑

K ′ �=0,−K

μKμK ′μ−(K+K ′)

[
v

(
K,K ′; ρ̂

)

N

] }
.

(12)

As in equation (5) the three-particle term only appears in the
EMA.

Since a free minimization of the approximate Helmholtz
free energy with respect to an infinite number of Fourier
components μK at all RLVs is intractable, we make a simple
ansatz for the one-particle density which is a superposition of
normalized Gaussians centered around the lattice sites of the
triangular lattice:

ρ(r) = ncα

π

∑

R

exp
[−α |r − R|2] , (13)

where α is the localization strength, nc is the average number
of particles occupying a lattice site, yielding a vacancy
concentration nv = 1 − nc, and {R} is the set of Bravais
lattice vectors of the triangular lattice with lattice constant
a = (

√
3nc/2ρ)1/2. Thus, the Fourier components μK now

simply read
μK = e−K2/4α. (14)

The ansatz, equation (13), was chosen in such a way that
the system forms a triangular lattice for any finite α keeping
its average density ρ fixed. For α → 0 the density profile
becomes flat and the system turns into a liquid. We thus end up
with two minimization parameters α and nc.

This ansatz ignores a possible partition of the system
into coexisting liquid and crystal phases of different densities
keeping the overall average density fixed. However, this is
accounted for by performing a common-tangent construction
to the crystal and liquid volume free energy densities at the end.
Furthermore, equation (13) disregards the spatial anisotropy
of the density site profile at each lattice site. We will see in
section 5.3, where we relax the constraint on the density peaks,
that both the assumption of isotropy and the Gaussian shape
are well justified close to the positions of the Bravais lattice
vectors, i.e., where the density is reasonably large (ρ(r) � ρ).

Employing the ansatz of equation (13) for the inhomo-
geneous density, the ideal part of the Helmholtz free energy
(equation (3)) can now be written as a function of α and nc

only: Fid[ρ(r)] = Fid(α, nc; ρ). For nc = 1 it reads

β

N
Fid(α, nc = 1; ρ) = const + ln(ρL2) + G(α∗), (15)

G(α∗) =
∫

A1

dx
ρ(x, α∗, nc = 1)

ρ
ln

[
ρ(x, α∗, nc = 1)

ρ

]
,

(16)
where const is an irrelevant constant and L is a density-
independent length scale of the system. x = rρ1/2 and α∗ =

Figure 1. The function G(α/ρ) and its analytically known
asymptotics for small and large localization strength.

α/ρ are the dimensionless space coordinate and localization
strength, respectively, and the integral is performed over the
area A1 of a unit cell. The function G(α∗) is approximated for
small and large localization strengths by its analytically known
asymptotics

G(α∗) 	
⎧
⎨

⎩

G1(α
∗) =

∑

K∗ �=0

exp
[−K∗2/2α∗] , α∗ 
 1

G2(α
∗) = ln(α∗/π) − 1, α∗ � 1,

(17)
where K∗ = K/ρ are the dimensionless RLVs. For
intermediate values of 2 � α∗ � 50 the function G(α∗)
was calculated numerically. The function G(α∗) and the
asymptotics of equation (17) are plotted as a function of α∗
in figure 1.

The ideal free energy for values nc �= 1 is obtained via the
simple scaling relation

β

N
Fid(α, nc, ρ) = const + ln(ρL2) + G(ncα

∗). (18)

4. The dipolar system

We now turn to the system of monodisperse particles which
repel each other with an inverse-power pair potential u(r) =
u0/r 3, where u0 is a parameter with dimensions of energy
× volume. For the specific realization of two-dimensional
paramagnetic colloids of susceptibility χ exposed to a
magnetic field B which is directed perpendicular to the 2D
plane, we have u0 = (χB)2/2 in Gaussian units [30]. Here,
we assume perfect alignment of the magnetic dipoles with the
external field which is well justified for χ B2 � kBT [31]. The
thermodynamics and structure depend, due to simple scaling,
only on one relevant dimensionless coupling parameter [32]

� = u0ρ
3/2

kBT
. (19)

Therefore, it is convenient to express all quantities in terms
of � and consider coupling parameters rather than densities via
this scaling relation. Correspondingly, the excess free energy

4
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within the SOT and TOT (equation (1)) now read

β FS/T
ex (�, α)/N = β f0(�) − 1

2

∑

K �=0

e−K 2/4α ĉ(2)
0 (K ; �)

− 1
6

∑

K �=0

∑

K ′ �=0,−K

e−(K 2+K ′2+(K+K ′)2)/4α ĉ(3)
0 (K,K ′; �),

(20)

the third term only appearing in the TOT. Here, � is the
coupling constant corresponding to the average density ρ

according to equation (19), ĉ(2)

0 = ρc̃(2)

0 , and ĉ(3)

0 = ρ2c̃(3)

0
are the dimensionless correlation functions of the fluid in
reciprocal space, respectively.

For the MWDA and EMA, the weighted coupling
constants �̂ now read

�̂(�, α) = �

[
1 − 1

3β�̂ f ′
0(�̂)

×
∑

K �=0

e−K 2/2α ĉ(2)

0 (K ; �̂) − �2/3

9β�̂5/3 f ′
0(�̂)

×
∑

K �=0

∑

K ′ �=0,−K

e−(K 2+K ′2+KK ′)/2α ĉ(3)

0 (K,K ′; �̂)

]3/2

,

(21)

where f ′
0(�) is the derivative of the excess free energy density

with respect to coupling constant. As in equation (12) the third
term only appears in the EMA.

In order to solve equations (20) and (21) we need the
two- and three-particle correlation functions ĉ(2)

0 (k; �) and
ĉ(3)

0 (k; �) and the excess free energy density f0(�) of the
corresponding liquid for a wide range of coupling constants �.
The two-particle correlation function is obtained with liquid-
state integral equation theory or from computer simulations.
In the first case, following the procedure described in [33] we
solve the Ornstein–Zernicke (OZ) equation [34]

ĥ(k) = ĉ(2)

0 (k)

1 − ĉ(2)

0 (k)
, (22)

which relates the dimensionless Fourier transform ĥ(k) =
ρh̃(k) of the total correlation function h(r) to the direct pair
correlation function ĉ(2)

0 (k), numerically. Note that the density
has been absorbed in both the Fourier transform of the total
correlation function ĥ(k) and in the direct correlation function
ĉ(2)

0 (k). The total correlation function is connected to the pair
distribution function via g(r) = h(r) + 1.

The solution of equation (22) for the two unknown
quantities ĥ(k) and ĉ(2)

0 (k) demands a constitutive equation,
the so called closure relation, which for any non-trivial case
can only be determined approximatively. Two approaches
which proved successful for the description of fluids with long-
range interactions will be applied here, the hypernetted chain
(HNC) [34] and the Rogers–Young (RY) closure relation [35].
They can both be written as

h(r) = e−βu(r)
{
1 + f (r)−1

(
eχ(r) f (r) − 1

)} − 1, (23)

where χ(r) = h(r)−c(2)
0 (r) is the indirect correlation function.

f (r) = 1 − e−ξr is a ‘mixing function’ with an adjustable

parameter 0 � ξ � ∞ which is either sent to infinity
(HNC)—which is equivalent to letting f (r) → 1—or chosen
to guarantee thermodynamic consistency between the virial
and compressibility routes to the free energy (RY).

The coupled equations (22) and (23) are iteratively solved
by applying the method of fast Fourier transforms for radially
symmetric two-dimensional problems as suggested by Caillol
et al [36] and as also summarized in appendix A of [33]. In
order to reach rapid convergence an iteration procedure for
the indirect correlation function χ(r) is used, since its Fourier
transform, χ̃(k), decays more rapidly with increasing k than
h̃(k). The iteration scheme now consists of making an ansatz
for c(2)

0 , calculating χ according to equation (22), obtaining
the next estimate of c(2)

0 via equation (23), inserting this into
equation (22), etc, until convergence is obtained.

Applying this procedure we are able to calculate ĉ(2)
0 (k; �)

for coupling constants � much larger than the experimentally
known coupling of freezing �f ≈ 10 [26] which enables us to
calculate the Helmholtz free energy of the system deep inside
the thermodynamically stable crystalline region.

More accurate pair correlation functions can be obtained
from computer simulations. We have performed extensive
Monte Carlo computer simulations [37] in a quadratic
simulation box of size L × L comprising 900 particles
employing periodic boundary conditions in order to measure
the pair distribution function gs(r) = hs(r) + 1, the subscript
‘s’ denoting the simulation result. Since the accessible range
of hs(r) is limited to distances r smaller than a cutoff radius
rc � L/2 we employed an extrapolation technique suggested
by Verlet [38] to obtain the complete pair correlation function:
Verlet defined a closure relation to the Ornstein–Zernicke
equation

h(r) = hs(r) r < rc

c(2)
0 (r) = c(2)

HNC(r) r > rc,
(24)

where cHNC(r) is given in equation (23). The Verlet closure
relation (equation (24)) together with the Ornstein–Zernicke
equation (equation (22)) uniquely specify the direct correlation
function c(2)

0 (r) for all radii r and thus also yield the correlation
function in reciprocal space ĉ(2)

0 (k). As for the HNC and the
RY closures, the Ornstein–Zernicke equation and the Verlet
closure were solved iteratively via the indirect correlation
function χ . Furthermore, rc was chosen as the largest root of
h(r) still smaller than L/2.

For the Verlet data we checked that the simulated system
does not crystallize for coupling constants � � 11. Here, the
freezing-criterion was chosen as a non-exponential decay of
the bond-orientational order parameter g6(r) = 〈exp[i6[θ(r)−
θ(r′)]]〉, where θ(r) is the angle of the bond connecting two
neighboring particles according to the Voronoi construction
(see figure 2). The application of the Verlet closure within the
DFT formalism was thus restricted to the range 0 � �̂ � 11.

The Fourier transforms ĉ(2)
0 (k) of the two-particle direct

correlation functions obtained from the three different closure
relations (HNC, RY, Verlet) are shown in figure 3 for � = 9,
which is close to the experimentally determined coupling
constant of freezing �f 	 10 [26]. The HNC closure
underestimates the pair structure strongly while the RY closure

5
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Figure 2. The bond-orientational order parameter g6(r) for different
coupling constants � as obtained by computer simulation. g6 decays
exponentially for coupling constants � � 11 indicating the system to
be in the fluid state.

Figure 3. The dimensionless Fourier transform ĉ(2)

0 (k) of the
two-particle direct correlation function at � = 9, plotted against
k/ρ1/2. Shown are simulation data using the Verlet closure, liquid
integral equation theory using the RY closure, and liquid integral
equation theory using the HNC closure. The arrows indicate the
positions of the first four reciprocal lattice vectors of the triangular
lattice.

is closer to the simulation data. We also show the positions of
the first four reciprocal lattice vectors of the triangular lattice
with lattice constant a = (

√
3/2ρ)1/2. The value of ĉ(2)

0 at
these lattice vectors crucially influences the solid free energies,
as can be seen from equations (20) and (21).

Within the RY-approach the excess free energy density
f0 is obtained by integrating the compressibility which is
inversely proportional to the static structure factor:

β f0(�) = 2

3

∫ �

0

d�′

�′

[
β P

ρ
− 1

]
, (25)

where the pressure P is given by

β P

ρ
− 1 = − 2

3�2/3

∫ �

0

d�′

�′1/3
ĉ(2)

0 (k = 0; �′). (26)

In order to obtain the excess free energy density from the
simulation data we make use of the relation [39]

β〈uex〉 = β
∂β f0

∂β
= �

∂β f0

∂�
(27)

Figure 4. The excess free energy density β f0(�) as a function of
coupling constant � using the Verlet closure, the RY closure and the
HNC closure.

between the average excess energy density 〈uex〉 =
1
2 〈�i �= j ui, j 〉 and f0 and integrate the former. Note that for
both of our approaches, the RY and the Verlet closure, the
virial and the compressibility route are equivalent. As the
energy dominates the free energy in the strong coupling limit,
� � 1, the excess free energy density scales roughly linearly
with coupling constant, as can be seen from figure 4.

For the EMA we need the three-particle correlation
function c̃(3)

0 (k,k′; ρ) of the underlying fluid for a wide range
of coupling constants. Here we use two conceptually different
approximations: The first approximation is by Denton and
Ashcroft [24] (DA) which is based on a weighted-density
approximation to the first-order direct correlation function
c(1)(r; ρ(r)) of an inhomogeneous system. The DA approach
leads to an analytic expression of c̃(3)

0 in terms of the one- and
two-particle correlation functions c(1)

0 , c̃(2)
0 of the liquid and

their derivatives with respect to density:

c̃(3)DA
0 (k,k′) = 1

3

[
f̃ DA

(|k|, |k′|)

+ f̃ DA
(|k|, |k + k′|) + f̃ DA

(|k′|, |k + k′|)
]
, (28)

where

f̃ DA(k, k ′) = 1

c(1)′
0

[
c̃(2)

0 (k)c̃(2)′
0 (k ′) + c̃(2)′

0 (k)c̃(2)
0 (k ′)

]

− c(1)′′
0[

c(1)′
0

]2 c̃(2)
0 (k)c̃(2)

0 (k ′). (29)

Here, primes denote derivatives with respect to density, as
above. The DA approximation—by construction—fulfills the
symmetry condition

c̃(3)DA
0 (k,k′) = c̃(3)DA

0 (k,k + k′) = c̃(3)DA
0 (k′,k + k′). (30)

The derivatives c̃(2)′
0 (k) were obtained by applying a

simple finite difference method bearing in mind that

ρ2c̃(2)′
0 (k; ρ) = 1

2

[
3�

∂ ĉ(2)

0 (kρ−1/2; �)

∂�

− kρ−1/2 ∂ ĉ(2)
0 (kρ−1/2; �)

∂kρ−1/2
− 2ĉ(2)

0 (kρ−1/2; �)

]
. (31)
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We calculated c̃(3)DA
0 (k,k′) taking the direct correlation

function from both the RY and the Verlet closure. As
pointed out in [22, 24, 40] the DA model, although itself not
derived from a free energy functional but from an approximate
one-particle correlation function, is very similar to different
approaches, all based on taking three successive functional
derivatives of approximate free energy functionals.

We also employed another approximation for c(3)
0 ,

namely a factorization ansatz of Barrat, Hansen and Pastore
(BHP) [23]. The approximation reads

c(3)
BHP(r, r′) = t (r)t (r ′)t

(∣∣r − r′∣∣) . (32)

The function t (r) can be uniquely determined from the
second of the sum rules in equation (9) which in r -space now
reads
∫

dr′c(3)
0 (r, r′; ρ) =

∫
dr′t (r)t (r ′)t

(∣∣r − r′∣∣)

= ∂c(2)

0 (r; ρ)

∂ρ
. (33)

We solved equation (33) numerically for t (r) applying the
method of ‘steepest descent’ as outlined in appendix B of [23].
As opposed to the simple finite difference approach above, the
derivatives c(2)′

0 (k) were now obtained by iteratively solving
the coupled differentiated Ornstein–Zernicke equation and the
differentiated RY closure relation, as outlined in appendix B
of [23]. Since it proved difficult to reach convergence of
the iteration procedure we did not pursue this method using
the Verlet closure. The triplet-correlation function was then
obtained by a double Fourier transform of equation (32) using
a standard expansion in Legendre polynomials, as outlined in
appendix A of [23].

For the single summation in equation (21) we consider
all RLVs of absolute value |K| � 33|K1|, where K1 is
the smallest RLV of the triangular lattice—this comprises the
first 299 stars of RLVs, which is easily sufficient to reach
convergence of the single summation. The double summation
is performed over sets of equivalent triangles of RLVs which
are each characterized by the absolute values of the two RLVs
K and K ′, and by the absolute value of their included angle.
For the DA model and for the BHP model we include 42 sets of
triangles of RLVs, where that RLV of the three RLVs, K, K ′,
K −K ′, with the largest absolute value satisfies |K| � 4|K1|,
which also guarantees convergence of the double sum.

5. Results

We first study the influence of the explicit inclusion of the
triplet-correlation functions obtained with the DA model and
with the BHP model on the approximate excess free energy
according to the TOT as compared to the simpler SOT,
and according to the EMA as compared to the MWDA,
respectively. For all six approaches we use the two different
closure relations of Rogers and Young (equation (23)), and of
Verlet (equation (24)), respectively.

5.1. Gaussian profiles, no vacancies

In order to keep things simple initially we keep the number
of particles occupying a lattice site, nc, in equation (13) fixed
(i.e., nc = 1) and thus end up with a single-order parameter,
the dimensionless localization strength α∗ ≡ α/ρ.

In figures 5(a) and (b) we show the weighted coupling
constant and the associated excess free energy difference per
particle between the solid and the liquid state Fex(α

∗)/N − f0,
according to equation (4), as functions of localization strength
α∗ for a value of � = 9 which is close to the experimentally
known value of freezing, �f 	 10 [26], for the MWDA and
for the EMA, using the RY or the Verlet approach to the direct
correlation function and using the two different approaches for
the triplet-correlation function, the DA and the BHP model.
The latter are both based on the direct correlation functions
used for the respective two-particle term. In figure 5(c)
the excess free energy for the simpler SOT and TOT are
plotted as a function of α∗ for the same approximations to the
correlation functions. In figure 5(d) the non-perturbative and
the perturbative approaches are compared. Various interesting
features of the different approximations are observed:

(i) for all approaches used except for those where c(3)

0
is obtained within the BHP model the excess free energy
decreases monotonically with increasing localization strength
α∗, reaching a plateau for α∗ ≈ 400 (cf figures 5(b) and (c)).
However, applying the BHP model to the triplet-correlation
function leads to an increase of �̂(α∗) and Fex(α

∗) for values of
α∗ � 80. The former behavior is intuitively expected and has
also been observed in the original MWDA [21]—localization is
favored by the excess part of the free energy. Once the density
peaks become very narrow, a further increase of α∗ does not
change the excess free energy further. On the other hand, the
rise of �̂ and of Fex within the BHP model is regarded as
unphysical. We therefore do not consider the BHP model any
further.

(ii) Both within the DA model and within the BHP model
(for α∗ � 80) the sign of the third term in equation (21)
is negative, i.e., the value of �̂ is decreased as compared
to the pure MWDA and thus freezing is favored. It is also
interesting to note, that within the DA model the triplet-part
in equation (21) is much smaller than the second-order term
while it is significantly larger within the BHP model. This
same behavior had already been found for hard spheres in three
dimensions [22].

(iii) Although the direct correlation functions using the
RY- and the Verlet closures do not differ by more than ∼10%
at the position of the most important first RLV (cf figure 4)
the difference in �̂ between the two is quite pronounced due
to the self-consistency relation in equation (21). Furthermore,
as shown in figure 5(b) the difference in excess free energy is
even more enhanced.

(iv) Inclusion of higher than second-order terms in a
non-perturbative way within the MWDA reduces the excess
free energy as compared to the simpler SOT (cf figure 5(d)).
However, inclusion of higher than third-order terms within the
EMA increases the excess free energy with respect to the TOT.

The total Helmholtz free energy per particle is obtained
by adding to the excess part Fex the ideal part Fid according to

7
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Figure 5. (a) The weighted coupling constant as a function of α∗ within the MWDA and within the EMA using c(2)

0 from the RY and from the
Verlet closure, and using c(3)

0 from the DA and the BHP model for � = 9. (b) The approximate excess free energy difference per particle
f0(�̂(α∗)) − f0(�) as a function of α∗ for the same approximations as in (a). (c) The approximate excess free energy difference per particle
Fex(α

∗)/N − f0(α
∗ = 0) as a function of α∗ obtained within the SOT and TOT using the same approximations for the two- and three-particle

correlation functions as in ((a), (b)) for � = 9. (d) Comparison of Fex obtained within the four different approximate theories MWDA, EMA,
SOT, and TOT using c(2)

0 from the Verlet closure, and using c(3)

0 from the DA model for � = 9.

equation (2). The free energy difference per particle �F/N =
[F(α∗; �) − F(α∗ = 0; �)]/N is plotted in figure 6 as a
function of α∗, for the same value of � = 9 as in figure 5
for the SOT and TOT (figure 6(a)), and for the MWDA and
EMA (figure 6(b)), respectively, using c(2)

0 from the RY and
from the Verlet closure, and using c(3)

0 obtained within the
DA model. It is found that the different curves of �F/N
show qualitatively very different behavior for the coupling of
� = 9: While the free energy increases monotonically with
α∗ within the SOT and MWDA and within the TOT and EMA
employing the RY closure it displays a local minimum with
respect to α∗ at a finite value of α∗ within the EMA and
TOT, employing the Verlet closure, this local minimum even
turning the deep global minimum within the TOT at α∗ ≈ 213.
The appearance of a global minimum at a finite value of α∗
corresponds to a thermodynamically stable crystalline state
while the global minimum at α∗ = 0 indicates a stable fluid
system.

In figure 7, we display the total free energy obtained within
the EMA employing the DA model with the Verlet closure for
three different values of � = 9.0, 9.4, 9.8. We thus conclude
from figure 7—this has already been presented in [17]—that
the EMA employing the Verlet closure and the DA model
yields a transition from the fluid to the solid close to � = 9.4:
while for � = 9.0 the fluid is stable as indicated by the minimal

value at α∗ = 0, fluid–solid coexistence is achieved at � = 9.4
(see the two equal minima in figure 7). The solid phase, on
the other hand, is clearly stable for � = 9.8. The localization
parameter at coexistence is roughly α∗

min ≈ 100.
The curves always display a local minimum with respect

to α∗ at α∗ = 0. This is in accordance with the mean-field
character of any approximation to the DFT, which ignores
fluctuations leading to a breakdown of long-range order in one
and two dimensions. Therefore, a first-order transition between
fluid and solid state is always predicted, i.e., the liquid system
always has to overcome a free energy barrier in order to reach
the thermodynamically stable crystalline state.

The freezing and melting transition constants for
the first-order phase transition predicted by the different
approximations to the DFT, �s and �f, respectively, are
obtained by using Maxwell’s double-tangent construction to
the fluid and crystal volume free energy densities �2/3 F/N ∝
F/V , where F denotes the minimum free energy with respect
to α, and �2/3 is proportional to the average density ρ of
the system (cf equation (19)). �s and �f correspond to
the freezing and melting densities, ρs and ρ f , respectively.
The volume free energy density is exemplarily shown for
the EMA using the Verlet closure and the DA model in
figure 8. Within this approximation we obtain freezing and
melting with a narrow coexistence gap �� = �s − �f.

8



J. Phys.: Condens. Matter 20 (2008) 404217 S van Teeffelen et al

Figure 6. The total free energy difference per particle �F(�)/N as a function of α∗ within the MWDA and EMA (a), and within the SOT
and TOT (b) using c(2)

0 from the RY and from the Verlet closure, and using c(3)

0 from the DA model for � = 9.

Figure 7. The total free energy difference per particle �F(�)/N as
a function of α∗ within the EMA using c(2)

0 from the Verlet closure,
and using c(3)

0 from the DA model for � = 9, 9.4, 9.8.

Figure 8. The liquid (solid line) and crystal (dotted line) volume free
energy densities �2/3 F/N obtained within the EMA using the Verlet
closure and the DA model as a function of �2/3. The inset show the
tilted free energy densities around the transition values �s, �f, as
indicated by arrows.

Table 1 summarizes the freezing/melting parameters for all
the approximations made. The data are compared against
experimental results obtained from real-space microscopy
measurements of magnetic colloids confined to an air–water
interface. The experiments give freezing with an intermediate

Table 1. Freezing and melting parameters �f and �s, the widths of
the coexistence regions �� = �s − �f, the relative displacement
parameters γ , and the pressures P at coexistence obtained within:
the SOT with the RY closure (first row); the TOT with the RY
closure (second row); the TOT with the Verlet closure (third row);
the MWDA with the RY closure (fourth row); the EMA with the RY
closure (fifth row); the EMA with the Verlet closure (sixth row),
where all three-particle correlation functions were obtained with the
DA model using the respective pair correlation function as input. The
last row displays experimental parameters for the isotropic–hexatic
transition, the hexatic–crystal transition and the Lindemann
parameter, obtained from real-space microscopy measurements of
magnetic colloids confined to an air–water interface.

�f �s �� γ β P(�f)/ρ

SOT with RY 42.85 42.92 0.07 0.017 288.3
TOT with RY 13.49 13.62 0.13 0.021 93.1
TOT with Verlet 6.79 6.97 0.18 0.019 53.1
MWDA with RY 41.07 41.13 0.06 0.017 276.1
EMA with RY 23.0 23.08 0.09 0.020 156.9
EMA with Verlet 9.33 9.49 0.16 0.020 72.6
Experiment 10.0 10.75 — 0.038 —

hexatic phase. The liquid–solid transition has also been studied
using numerical simulation [28, 29] yielding a slightly higher
inverse transition temperature between 12.0 and 12.25 but
these investigations suffer from finite size effects.

As becomes evident from table 1, the SOT, TOT, and
MWDA are not quantitatively satisfying theories, as they
either over- or underestimate the freezing coupling. Note
that the overestimation of the freezing coupling within SOT
and MWDA are the reason why it is not possible to feed
the ‘exact’ pair structure into these theories. At such high
coupling, no fluid pair structures are available since the fluid
spontaneously crystallizes in the simulation. The EMA, on the
other hand, yields results in close agreement with experimental
data. The TOT obviously underestimates the freezing coupling
by a factor of ≈2.

More detailed, structural information can be extracted
from the localization parameter of the coexisting solid. For
all approximations used we find localization parameters at
freezing in the range 99 < α∗

min(�s) < 115. Strictly
speaking, the localization parameter has no counterpart in
‘real’ 2D systems since the particles are not localized due to

9
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Figure 9. The total free energy difference per particle �F(�)/N as a function of α∗ and nc within the EMA using c(2)

0 from the Verlet
closure, and using c(3)

0 from the DA model for � = 9.49. The left panel displays a zoom-in of the right panel.

long-range fluctuations. However, if one relates the particle
displacements to that of their nearest neighbor, one can define
a finite quantity as γ = ρ〈(ui − ui+1)

2〉, where ui and
ui+1 are the displacement vectors of neighboring lattice sites.
Disregarding nearest-neighbor correlations 〈ui ·ui+1〉, γ can be
estimated. Since the nearest-neighbor correlations 〈ui · ui+1〉
are expected to be positive:

γ � 2ρ
〈
u2

i

〉 ≈ 2/α∗
min. (34)

By this relation, the localization parameter of the
coexisting solid gives a prediction for γ which is included
in table 1. From experiments, γ is known to be close to
∼=0.038 [26]. This was shown to be in accordance with
harmonic lattice theory [41]. The EMA yields γ � 0.020,
i.e., the EMA roughly overestimates the localization of the
particles by a factor of 2. γ is smaller than the experimental
value, contrary to what was expected from the inequality (34).
This shows that there is still a need to improve the theories
in order to correctly predict localization properties. A similar
overestimation of the localization is also common in weighted-
density approximations in three spatial dimensions [21].

Another quantity of interest, which is directly connected to
the Helmholtz free energy is the pressure at coexistence which
is also included in table 1. It is obtained via equations (25)–
(27), depending on whether the RY closure or the simulation
data were used.

5.2. Gaussian profiles, allowing for vacancies

In this subsection, we relax the constraint of zero vacancy
concentration, 1 − nc = 0, in equation (13) and instead
minimize the total free energy with respect to the two
parameters α and nc, respectively. However, instead of
calculating the phase diagram for all approximations to the
DFT and to the pair- and triplet-correlation functions, we focus
here on the two non-perturbative approaches, the MWDA using
the RY closure and the EMA using the Verlet closure and the
DA model. In figure 9 we plot the approximate total free
energy per particle of the EMA as a function of α and nc for the
freezing coupling constant obtained at fixed nc = 1, � = 9.49.
The minimum of the total free energy is slightly shifted in
nc and α from (nc ≈ 1, α∗ ≈ 98.7) towards (nc ≈ 0.998,
α∗ ≈ 100.5). As can be seen in figure 9(a), the difference in
total free energy per particle between the two configurations

is only of the order 10−4kBT , which has no influence on the
phase diagram within the accuracy given in table 1.

For the simpler MWDA, however, the vacancy concentra-
tion is substantially larger, which has pronounced effects on the
phase diagram. In particular, we find the coupling constants of
freezing and melting reduced to (�f ≈ 37.35, �s ≈ 37.45),
the liquid being in coexistence with the triangular crystal at the
parameters nc ≈ 0.966, α∗ ≈ 200.5, i.e., the relaxation of nc

improves the prediction of the freezing coupling while the Lin-
demann parameter γ ≈ 0.01 is by a factor of ≈2/3 smaller
than predicted within the simpler theory keeping nc = 1 fixed
which—compared to the experiment—is worse than the result
from the constrained theory.

5.3. Free minimization

In this final subsection we completely remove the constraint
of Gaussian density peaks. Instead, we minimize the density
functional with respect to a free, periodic density field ρ(x, y),
which has the periodicity of the hexagonal lattice with lattice
constant a = (

√
3nc/2ρ)1/2, as above. As laid out in [42], we

minimize the density functional of the SOT with the RY closure
with respect to ρ(r) by calculating the overdamped relaxation
dynamics of a highly ordered hexagonal crystal with the help
of dynamical DFT [43–46] according to

∂ρ(r, t)

∂ t
= β D∇ ·

(
ρ(r, t)∇ δF[ρ(r, t)]

δρ(r, t)

)
, (35)

where β D is the mobility coefficient, which sets the Brownian
timescale τB = (ρD)−1. Since in this work we are only
interested in the equilibrium state reached after long time,
τB is irrelevant in the following considerations, i.e., we use
equation (35) just as a minimization procedure to the static
DFT. Starting from an initial density profile ρ(r, t = 0),
equation (35) is solved numerically for times (t/τB) � 10
applying a finite difference method and keeping the coupling
constant � fixed. The maximum time is chosen large enough
to guarantee convergence towards a (local) minimum of the
free energy landscape. The rectangular periodic box of size
Lx × L y = √

3a × a with a discretization of 256 × 128 lattice
points comprises 2nc particles. Due to lattice symmetry, it
suffices to solve the problem in a single elementary cell. For
ρ(r, t = 0) we choose a superposition of sharply localized
Gaussians according to equation (13) with a large localization
strength of α∗ = 200.
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Figure 10. Height of the density peak ρ(r, �) and difference in free
energy �F(�) as a function of � obtained from dynamical DFT
using the SOT with the RY closure.

At first, we fix nc = 1 and calculate the equilibrium
density profiles and the according approximate Helmholtz free
energies for various coupling constants 0 < � � 62.5. In
figure 10 we plot the difference in Helmholtz free energy
density �F(�)/N = F[ρ(r, t → ∞; �)]/N − f0(�)

between the final (solid/liquid) and the liquid state as a function
of �. The system remains crystalline for couplings � � 30.7.
However, the free energy difference is negative only for � �
36.2, which is equivalent with thermodynamic stability. As for
the Gaussian parametrization coexistence is found in a narrow
gap around � ≈ 36.2 which we do not specify here.

In figure 11(a) we plot the equilibrium density profile
ρ(r; �) for � = 36 which is close to freezing. In figure 11(b)
the quantity r 2ρ(r), where r is the distance from a lattice
vector, is shown along the two directions [11] and [10],
corresponding to cuts through the density plane in figure 11(a)
along the x- and the y-axis, respectively, which is compared
to a Gaussian of the same height as the density peaks. It is
found that the density profile has an isotropic Gaussian form
for small distances from the origin r � 0.1/ρ1/2. For larger
distances, however, i.e., where the density is of the order of
ρ(r) � ρ, the density profile significantly deviates from a

Figure 12. The difference in Helmholtz free energy per particle
�F(nc;�)/N as a function of nc for different coupling constants
� = 35, 37, 40. The arrows indicate the positions of the minima.

Gaussian form. In particular, we observe the establishment of
‘bridges’ of higher density between neighboring lattice sites,
whereas the density is significantly lower between next-nearest
neighbors. This counter-intuitive behavior was also found
applying the MWDA to hard sphere crystals in three spatial
dimensions [18]. However, computer simulations revealed that
the behavior should be the opposite. Although we did not
measure the density profiles of the two-dimensional dipolar
system in computer simulations, we expect a similar behavior:
The probability density should be enhanced along the [11]-
direction as compared to the [10]-direction.

We also performed the minimization procedure for
different vacancy concentrations. In figure 12 we show the
free energy difference �F(nc; �) as a function of nc for four
different values of �. We find, that for crystals in equilibrium,
i.e., for � � 36, the equilibrium vacancy concentration is
1 − nc ≈ 0.03. However, the overheated crystal which is
metastable for 31 � � � 36 prefers a vacancy concentration
of 1 − nc ≈ −0.03, implying interstitials instead of vacancies.
We note that most of the point defects in the experimental
realization of the dipolar system appear in pairs as dislocations
or pairs of dislocations, respectively [26].

Figure 11. (a) The density profile ρ(r) obtained from dynamical DFT using the SOT with the RY closure for � = 36 which is close to
freezing. (b) The quantity r 2ρ(r; t → ∞) along the straight line connecting two nearest neighbors (y2ρ(x = 0, y; t → ∞), i.e., in the
[10]-direction) and along the line connecting two next-nearest neighbors (x2ρ(x, y = 0; t → ∞), i.e., in the [11]-direction), both drawn from
the center to the respective edge of the box in (a). The two curves are compared to a Gaussian of the same amplitude at r = 0. The inset
displays the bare density along the same lines and the bare Gaussian.
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6. Discussion and concluding remarks

In conclusion, we have demonstrated that density functional
theory is able to quantitatively predict the freezing transition
of a two-dimensional colloidal system with long-range
1/r 3-interactions in good agreement with experimental and
simulation data. In complete analogy to systems in 3D, the
appearance of long-range interactions requires the explicit
inclusion of three-particle correlation functions of the liquid in
the construction of the weighted density [13, 22]. Furthermore,
the predicted transition temperatures are very sensitive to slight
changes of the two- and three-particle correlation functions of
the underlying fluid. A highly accurate input of the same is
therefore crucial.

The density functional obtained can be used in future
studies in order to approach more complicated situations such
as crystals in confinement [18], under gravity [47], and crystal-
fluid interfaces [49, 48]. By extending the static functional
to Brownian dynamics [42–46], one may even address non-
equilibrium situations. One possible problem to tackle is
heterogeneous nucleation upon temperature quenches and
subsequent crystal growth, as outlined recently in [46].
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